Der Anteil der Windenergie im Strommix steigt weltweit stetig an und mit ihr der Bedarf an effizienten und qualitativ hochwertigen Windkraftanlagen. Herzstück des Windrads sind die Rotorblätter, deren Produktion und Wartung strenge Prüfverfahren erfordert. Mit dem neuartigen Radarscanner des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF werden Defekte in der Materialzusammensetzung der Windradflügel wesentlich genauer als bisher aufgespürt und in Querschnittsansicht visualisiert.
Für eine klimaverträgliche Stromversorgung ohne fossile Brennstoffe ist die Windkraft mittlerweile unverzichtbar. Etwa 50 Gigawatt und damit 12 Prozent des gesamten Stroms werden in Deutschland mittlerweile über mehr als 28’000 Windkraftanlagen erzeugt – Tendenz steigend. Weltweit wird sich die durch Windräder erzeugte Leistung laut Global Wind Energy Council bis 2030 auf 2’110 Gigawatt vervierfachen – und dann 20 Prozent der weltweiten Elektrizitätsversorgung ausmachen. Umso wichtiger ist es für diesen Wachstumsmarkt, dass die Windkraftanlagen immer leistungsfähiger, aber auch zuverlässiger und langlebiger werden. So können zum Beispiel Schwachstellen in der Produktion der Windradflügel laut Branchenexperten während der Gesamtbetriebsdauer der Anlage ungeplante Mehrkosten von mehreren hunderttausend Euro in Betrieb und Wartung verursachen. Damit Windräder kosteneffizienter und verlässlicher betrieben werden können, hat das deutsche Fraunhofer IAF einen Materialscanner für die Qualitätskontrolle von Rotorblättern entwickelt. Mit der auf Radar basierenden Technologie können Defekte in der Materialzusammensetzung der Windradflügel noch detaillierter als bisher aufgespürt werden.
Defekte in Verbundkunststoffen identifizieren
Die meist dreiflügeligen Rotoren sind die zentralen Komponenten jeder Windkraftanlage: Sie wandeln den Wind über Rotationsenergie in elektrischen Strom um. Ähnlich wie die Tragflächen eines Flugzeugs sind sie enormen Belastungen ausgesetzt und müssen deshalb sehr widerstandsfähig konstruiert werden. Moderne Windradblätter bestehen hauptsächlich aus glas- und kohlefaserverstärkten Kunststoffen (GFK / CFK), damit sie auch bei starken Böen die Windenergie elastisch abfedern, ohne zu brechen. Für einen Flügel werden bis zu 100 Glasfasergewebe-Bahnen aufeinandergeschichtet, in Form gebracht und meist mit Epoxidharz verklebt. In diesem Produktionsschritt ist die Qualitätskontrolle essenziell: «Die Schwierigkeit besteht darin, die Glasfaserbahnen vor der Verklebung glatt aufzuschichten, ohne dass sich beispielsweise Ondulationen – also Wellen – und Falten bilden, oder es beim Epoxid-Auftragen zu Harznestern oder unausgehärteten Laminatstellen kommt», erklärt Axel Hülsmann, Koordinator des Radarprojekts und Gruppenleiter Sensorsysteme beim Fraunhofer IAF. Derartige Defekte sowie Delaminierungen oder Brüche lassen sich grossflächig über Infrarot-Thermographie lokalisieren. «Mit unserem Materialscanner können die Defekte jedoch deutlich präziser identifiziert werden, da mit der Radartechnologie zusätzlich eine Tiefenauflösung möglich ist – und das an Stellen, an denen Ultraschallmethoden versagen», so Hülsmann.
Querschnittsprofile mit millimetergenauer Präzision
Kern des Materialscanners ist ein Hochfrequenzradar, das im sogenannten W-Band zwischen 85 und 100 GHz bei wenigen Watt Sendeleistung arbeitet. Mit einer speziellen Software können Sende- und Empfangssignal verarbeitet und die Messergebnisse visualisiert werden. «Dadurch können wir Querschnittsansichten der Flügel generieren, mit denen Defekte im Millimeterbereich identifiziert werden können. Damit ist unser Materialscanner erheblich genauer als herkömmliche Methoden», bemerkt Hülsmann. Das Radarmodul basiert auf Indium-Gallium-Arsenid-Halbleitertechnik und kann durch seine monolithisch integrierte Bauweise, bei der man verschiedene Komponenten und Funktionen auf nur einem Chip integriert, extrem leicht und kompakt gefertigt werden. Mit einer Abmessung von 42 x 28 x 79 mm hat es die Größe einer Zigarettenschachtel und wiegt nur 160 Gramm. Es zeichnet sich durch eine geringe Leistungsaufnahme von etwa 5 Watt aus und verfügt über einen eingebauten Mikrocontroller, der die Messsignale über eine Internet-Schnittstelle ausgibt.
In Zukunft soll der Frequenzbereich des Moduls auf bis zu 260 GHz ins sogenannte H-Band ausgedehnt werden. «Damit könnten wir die Bandbreite des Radarmoduls von 15 GHz auf über 60 GHz vervierfachen. Ziel ist, die bereits sehr gute Auflösung der Rotorflügel-Querschnitte nochmals zu erhöhen», sagt Hülsmann.
Geringere Wartungskosten durch reduzierte Stillstandzeiten
Der Materialscanner des Fraunhofer IAF könnte künftig nicht nur im Produktionsprozess der Rotorflügel, sondern auch in der Wartung zur Klassifizierung von Defekten eingesetzt werden, die beispielsweise durch Vogelschlag entstehen können. «Die regelmässige Prüfung der Rotorblätter ist derzeit überwiegend Handarbeit: Ein Experte klopft die Flügel mit einem Hammer ab und erkennt am Klang, ob an gewissen Stellen Defekte vorliegen. Eine automatisierte Lösung, ergänzt durch unsere Radartechnologie könnte die Stillstandzeit der Windkraftanlage erheblich begrenzen und so helfen, Kosten einzusparen», erläutert Hülsmann. Dies gilt insbesondere für Offshore-Windräder, die für manuelle Wartungen bei teilweise widriger See zeitraubend mit dem Schiff angesteuert werden müssen.
Alternative Prüftechnologien wie beispielsweise Ultraschalllösungen sind in der Wartung äusserst schwer einsetzbar. «Da beim Ultraschall jeder Lufteinschluss zwischen Sensor und Prüfobjekt das Signal stark dämpft, muss Wasser oder Gel als Kopplungsmittel eingesetzt werden. Das ist in der Defektkontrolle der Rotorblattproduktion mit einigen Nebenwirkungen verbunden, aber grundsätzlich möglich. Wasser oder Gel bei Windradflügeln in einer Höhe von über 100 Metern einzusetzen, ist aber sehr kompliziert. Radar ist hier die optimale Lösung, weil wir berührungsfrei ‹Remote Sensing› betreiben können», sagt Hülsmann.
Weitere Informationen:
www.iaf.fraunhofer.de